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ABSTRACT

Four monogenic, recessive dwarf mutants of lettuce (Lactuca
sativa L.), previously isolated from a population induced by ethyl
methanesulfonate, were compared with the normal genotype (E-
1) for plant height, weight, leaf area, as well as hypocotyl length
and root length. These nonallelic dwarfs (dwf1, dwf2, and dwf3)
exhibited reduced hypocotyl length, smaller, dark green leaves,
and reduced stem length. Another mutant, dwf2', allelic with dwf2,
exhibited an intermediate phenotype. Epidermal cells on hypo-
cotyls and mature leaves were counted for both normal E-1 and
dwf2 plants. The total number of epidermal cells per unit area for
hypocotyls and for leaves from these plants was very similar,
implying the dwarf's smaller size was due to an inhibition of cell
expansion and not due to decreased cell divisions. Both dwarf
and normal hypocotyls elongated normally in response to exog-
enous gibberellin A3 (GA3). In the rosette stage, only E-1 and
dwf2' responded similarly to lower concentrations of GA3, while
the other dwarfs required higher concentrations to respond. Hy-
pocotyls of dwf2 and E-1 elongated equally with applied ent-
kaurenol, ent-kaurenoic acid, GA53-aldehyde, GA53, GA19, GA20,
and GA1 indicating that the biochemical block in dwf2 occurs at
a very early step in the GA-biosynthetic pathway.

GAs3 have been shown to regulate stem elongation in
dicotyledonous rosette plants (3, 7, 10, 25, 26). This is evident
from the increased stem growth in response to certain envi-
ronmental stimuli (7) and to GA treatments (3) and from the
response of dwarf mutants (18). Bukovac and Wittwer (2, 28)
showed that stem elongation in the cumulative long day plant
lettuce was stimulated by exogenous GAs. The highly respon-
sive nature of normal lettuce to applied gibberellins has been
studied and used in hypocotyl elongation bioassays for many
years (1, 21-23). It has been inferred that the early-13-hy-
droxylation pathway of gibberellin biosynthesis operates in
lettuce (14). Based on these studies, it seems likely that stem
elongation in lettuce is regulated by increased GA biosynthesis
via the early- 13-hydroxylation pathway.
GA-responsive dwarf mutants have been reported in maize

(15, 16), pea (5, 6, 19), Arabidopsis thaliana L. Heynh. (9,
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10, 29), rice (11, 12), tomato (8), and others. Several of these
dwarfs are deficient in endogenous GAs, while all of them
respond to some degree to applied GA. This response by the
dwarfs is often greater than the response of the corresponding
normal genotype, though this is not so for pea (19) or tomato
(8). Thus, dwarf mutants in several species appear to be more
responsive to GA than their normal counterparts while a few
others do not exhibit this trait.

In this paper we phenotypically characterize four single-
gene, recessive dwarf mutants of lettuce and measure their
response to exogenous GA3. Hypocotyls of dwf2 and the
normal genotype were also measured in response to ent-
kaurenol, ent-kaurenoic acid, GA53-aldehyde, GA53, GA19,
GA20, and GA,.

MATERIALS AND METHODS

Seedling Growth Conditions

The lettuce (Lactuca sativa L.) strains used in this study
were normal E-l (SC352), dwarf-l (SC904), dwarf-2 (SC367),
dwarf-4 (SC3515), and dwarf-8 (SC3670). All strains are sin-
gle-gene mutants of E- 1 and have a 60-d maturity, except for
dwarf- 1, which is a single gene mutant of E-3 and has an 80-
d maturity (27). Seeds were surface-sterilized with 70% (v/v)
ethanol, rinsed with sterile distilled water, followed by 0.5%
(v/v) sodium hypochlorite, and rinsed again with sterile dis-
tilled water. They were then placed on two layers ofWhatman
No. 1 filter paper in 14 x 14 x 7 cm polypropylene containers,
moistened with 10 mL of growth medium containing 5.0 mM
KCl and 0.1 mm CaCl2, covered with plastic wrap, and placed
in an incubator at 23C. Light was given as indicated.

Hypocotyl Elongation Response to GA3

Seeds of each strain were surfaced sterilized and grown in
polypropylene containers under the conditions described
above with continuous light (30 umol m-2 s-1), for 36 h.
Uniform seedlings were transferred to containers with 15 mL
growth medium, plus different concentrations of GA3 and
returned to the incubator for 72 h.

Seedling Growth Bioassays

Twenty seeds of each strain were sown directly in Petri
dishes onto moistened filter paper as described above, except
that the germinating seedlings were placed in a 15sC chamber
for 24 h and then transferred to 26°C for 5 d. Two different
fluence rates of white light were used: half the seeds received
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120 ,umol m-2 s-', the other half received 45 Omol m-2 s-'.
At the end of the treatment, hypocotyl length, cotyledon
length, and root length were measured.

Shoot Growth in Response to GA3

Seeds of dwarfs and normal were sown directly in sterilized
field soil, grown in a greenhouse. The plants were fertilized
weekly with general purpose, water-soluble fertilizer
(20N:8.7P: 16.7K) (Peters Fertilizer Products, Fogelsville, PA)
at half-strength. Three-week-old plants were treated with dif-
ferent concentrations of GA3 and allowed to grow for an
additional week. At 4 weeks, the stems and leaves of these
plants were measured for response to GA3.

Hypocotyl Elongation Response to 13-Hydroxy GAs

E-1 and dwarf-2 seedlings were germinated in droplets
containing increasing concentrations of several 13-hydroxy
gibberellins and their precursors. Individual dry seeds of each
line were placed in 10 ,L droplets containing growth medium
plus one of the following: ent-kaurenol, ent-kaurenoic acid,
GA53-aldehyde, GA53, GA19, GA20, and GA1, at concentra-
tions of 0.50 ng gL-' to 50.0 ng fL-' as indicated. Droplets
(10 ,LL) were placed evenly spaced around the inner surface
of a clean, dry, 150 mm diameter glass Petri dish. One dry
seed was placed in each droplet, the dishes were then sealed
with plastic film, and placed in a growth chamber at 23°C,
with continuous light (30 umol m-2 s-'), for 48 h. At the end
of this period, the entire solution had been imbibed by the
germinating seedling. These seedlings were transferred to large
clear plastic containers (35 cm x 25 cm x 10 cm) on two
sheets of Whatman No. 3 filter paper moistened with growth
medium. The boxes were sealed with plastic film and returned
to the growth chamber for an additional 72 h. At the end of
5 d, seedling hypocotyl lengths were measured.

Leaf and Stem Measurements

Seeds of dwarfs and normal were sown directly into steri-
lized field soil in 10 cm x 10 cm x 10 cm plastic pots and
thinned to five plants per pot after emergence. Plants were
grown in a greenhouse and no fertilizer was supplied. All
plants were measured for total stem height, total shoot height,
area of the single largest leaf, average number of leaves per
plant, and total leafarea at maturity, 63 d after sowing. Single
largest leaves were measured at 49 d. Dwarf- 1 (E-3 type) was
measured 78 d after sowing. Leaf area was measured using a
Delta-T Area Measuring System, type AMS with a CB Con-
veyor Unit (Decagon Devices, Inc., Pullman, WA).

Light Microscopy Studies

Fresh sections of dwarf-2 and normal E-1 hypocotyls and
leaves were grown as above and prepared by first floating the
sections on water, then placing them in an Azure A stain
(0.1% Azure A mixed in Cellosolve, nine drops added to one
drop 0.2 M Na2HPO4.7H20 [pH 9.0]). The staining tissue
was treated with microwave irradiation for 5 s, then rotated
900 and irradiated for another 5 s. Destaining was carried out
with 100% ethanol, two or three times until excess stain was
gone. Sections were mounted in Euparol.

RESULTS

Description of Dwarf Mutants

Four monogenic, recessive dwarf mutants were previously
isolated among M2 seedlings from an EMS induced popula-
tion (27) (Fig. I). These plants represent three nonallelic
dwarfing genes: dwfl (dwarf-l), dwf2 (dwarf-2), and dwf3
(dwarf-4). A fourth mutant, dwarf-8 (dwf2') is allelic to dwf2,
yet has an intermediate phenotype.
Stem and leaf measurements were made to determine dif-

ferences among dwarfs (Fig. 2). Normal (E-1) plants grew

If

Figure 1. Dwarf and normal plants 52 d after
sowing. The early maturing strains E-1, dwf2,
dwf3, and dwf2' are flowering while the inter-
mediate strains, E-3 and dwfl, are roughly 10 d
away from flowering.
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Figure 2. Total shoot height (A), shoot weight (B), single largest leaf
(C), and average number of leaves per plant (D) measured at 63 d
after sowing (single largest leaf was measured at 49 d). dwfl (E-3
type) was grown at a later date under similar conditions and was
measured at 78 d. E-1 = E-1, dwfl = dl, dwf2 = d2, dwf3 = d3,

and dwf2' = d2i. Each value represents the average of five plants +
SD.

more than three times as tall as the shortest dwarf (dwf3) at
maturity (63 days) (Fig. 2A). dwf2i was the tallest dwarf
growing to roughly twice the height of the allelic dwf2.

Shoots of E- 1 weighed significantly more than those of the
dwarfs at maturity (Fig. 2B). Despite the taller stature exhib-
ited by dwfl and dwf2' over the other dwarfs, these differences
were not reflected in their weights, and were not significantly
different from the other dwarfs. There were no significant
differences between dwf2i and dwf2. dwfl was the heaviest
dwarf due in part to its later maturity and larger panicle size
(data not shown).

Despite the very short stature and reduced weight of dwf3,
this dwarf produced the largest leaves among the dwarfs (Fig.
2C). The area of the largest nonsenescing leaf was highest for
dwf3, followed by dwfl and dwf2'. Leaf areas for these three
dwarfs were significantly larger than dwf2.
dwfl and dwf2 had a greater total number of leaves per

plant than the other plants (Fig. 2D). For dwfl this could be
related to its later maturity. dwf2 has the same maturity E-l
and therefore may have an altered plastochron.

Light Microscopy

Cross-sections of dwf2 leaves were nearly twice the thick-
ness and had nearly twice the number of palisade and meso-
phyll layers compared to E-l leaves (Table I). Leaf epidermal
cells of dwf2 were about one-half the size of E-l cells and
dwarf stomata were less than half the size of the E- 1 stomata.
However, there were equal numbers of cells per total leafarea
for E-l and dwarf.

Epidermal cells were also measured for E-l and dwf2
hypocotyls and similar results were obtained (Table I). Despite
their greatly reduced size, total numbers of exterior cells on
dwarf hypocotyls were nearly equal when calculated on an
area basis.
Mature morphological comparisons of E-l and dwf2

showed that dwarf flowers had misshapen petals, reduced and
swollen stigmas, and reduced and swollen pollen tube struc-
tures compared to E- 1 (data not shown).

Table I. Anatomical Comparisons between dwf2 and E-1 Lettuce
Cell counts were taken from hypocotyl and leaf epidermal surfaces as well as leaf cross-sections for

El and dwarf-2. They were examined with a light microscope. Values represent averages of 5 samples
+ SD.

Comparisos E-1 dv2

Leaf Cross-Sections
Total thickness 0.09 mm ± 0.02 0.16 mm ± 0.03
Palisade parenchyma 1 to 2 layers 3 layers
Mesophyll cells 5 to 6 layers 9 layers

Cell counts
Leaf epidermal cell area 0.185 mm2 ± 0.02 0.119 mm2 ± 0.016
Cells per total leaf area 52,594 cells + 1,832 52,773 cells ± 2,524

Leaf stomatal area 1.25 mm2 ± 0.47 0.53 mm2 ± 0.14
Stomata per leaf area 7,784 stomata ± 544 9,849 stomata ± 728

Hypocotyl epidermal cells 0.021 mm2 ± 0.0047 0.013 mm2 ± 0.0021
Cells per hypocotyl area 46,333 cells ± 3,132 48,307 ± 2,846
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Seedling Growth

The growth of6-d-old seedlings, grown in Petri dishes under
controlled conditions, was measured to characterize growth
by the different dwarfs (Fig. 3). As light intensity was de-
creased, hypocotyl lengths increased.

E-l exhibited the most hypocotyl growth under both the
high and low light regimes (Fig. 3A). dwf2 seedlings had the
shortest hypocotyls under high and low light conditions.

In contrast, roots were significantly longer for dwarfs than
for E- 1 (Fig. 3B) and exhibited an inverse relationship with
hypocotyl length. Only dwf3 roots under low light were

shorter than E- 1. Hypocotyl length was plotted versus root
length for dwarf and E- I seedlings to determine the extent of
an apparent inverse relationship between the growth of these
two organs. Under high light conditions, there was clearly a

strong negative correlation (r = -0.71): as root length in-
creased, hypocotyl length decreased. However, under low light
conditions, there was no relationship (r = -0.13).
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Figure 3. Intact hypocotyls (A) and roots (B) measured on 6-d-old
seedlings. Seedlings were grown under continuous light at two
different light intensities (120 umol m-2 s-1 and 45 Mmol m-2 s-1). E-
1 = E-1, dwfl = dl, dwf2 = d2, dwf3 = d3, and dwf2i = d2i. Each
measurement is an average of 20 seedlings ± SD.

Response to GA3

With spray applications of 10 gM GA3 twice weekly, all the
dwarfs could be made to resemble normal E-1 phenotypes
(data not shown). In the seedling stage, normal and dwarfs
responded to GA3 treatment with increased hypocotyl length
(Fig. 4A). Hypocotyls of each seedling group exhibited elon-
gation proportional to the log of the GA3 concentration up to
10 jiM, except dwf3. Length of normal hypocotyls for all but
dwf3 seedlings were similar and did not differ statistically. All
seedlings except dwf3 germinated normally. dwf3 has abnor-
mally shaped seeds which appear shrunken and slightly
twisted. These seeds germinate more slowly than either E-1
or the other dwarfs. All other hypocotyls were measured 108
h after imbibition, while dwf3 was measured at 132 h. Thus,
despite the later germination of dwf3, all strains of dwarf and
normal lettuce were generally as responsive to applied GA3
after imbibition.
At the rosette stage (21 d), all the dwarfs responded to GA3,

confirming the responsive nature of these mutants to exoge-
nous GAs during a later stage of development. Stem elonga-
tion was proportional to the log of the GA3 concentration
(Fig. 4B). However, stems of the normal E-l and dwf2'
responded to lower concentrations (20.0 1 M) than the other
dwarfs (- 1.0 Mm). The capacity ofthe other dwarfs to respond
to GA3 was significantly less. The highest concentration (100.0
Mm) inhibited elongation in E-1 while dwf2' continued to
elongate. The dwf2' response and its intermediate stature
suggest that in lettuce, height is in some way related to GA3
responsiveness. This result is supported by results shown in
Figure 4C. Leaf elongation confirmed that all dwarfs were less
responsive to GA3 than E- 1, though among the dwarfs, dwJ2'
was again most responsive.

Response to Members of the GA Biosynthetic Pathway

The intact lettuce hypocotyl bioassay was used to compare
the responses of dwf2 and E-l to exogenous gibberellins.
Because of the scarcity of the available intermediates, a mini-
drop method was developed to minimize the solution volume.
Preliminary attempts to adapt the rice seedling bioassay (13),
which involves placing a small drop of GA solution on the
growing seedling, produced erratic results in lettuce. A con-
sistent response was obtained by allowing seeds to fully imbibe
10 ML droplets of GA solution placed on glass. During ger-
mination the radicle and cotyledons emerge, but the hypo-
cotyl has not yet elongated. Upon transfer to moist filter paper
in continuous light, the hypocotyls elongate in response to
the GA it has imbibed.

ent-Kaurenol, ent-kaurenoic acid, and GA53-aldehyde were
inactive in promoting dwf2 hypocotyl extension at all concen-
trations (Fig. 5A). In contrast, GA, and GA20 were active at
low concentrations while GA53 and GA,9 were active only at
high concentrations. These results were very similar to those
for E- 1 plants (Fig. 5B) and confirm the general responsiveness
of both dwarf and E-l hypocotyls to GA3 among all dwarfs
(Fig. 4A).
These data show that the E- I hypocotyl tissue is quite GA-

responsive. They also suggest that GA biosynthesis is limiting
in the E-1 hypocotyl tissue and that the metabolic lesion in
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dwJ2 occurs at an early stage of GA-biosynthesis. However,
these suggestions remain to be proven.

DISCUSSION

The dwarf mutants exhibited distinct anatomical and mor-
phological features which we used to distinguish one line from
another. Dwarfs were all smaller than E-1 except for their
roots. The seedling root lengths of dwn2 and dwJ2' were
significantly longer than those of E- 1. Since shoot/root ratios
are dependent on resource allocation, the inverse relationship
between hypocotyl growth and root growth suggests a possible
role for GA (direct or indirect) in regulating nutrient translo-
cation in lettuce. Accurate analysis at the mature stage is
needed to confirm this observation.

Interestingly, dw]2f was not simply a larger phenotype of
the allelic dwfl. Whereas dw]2' hypocotyl and mature shoot
height as well as total leaf number were nearly that of E-1,
total shoot weight and total leaf area averaged at or below the
dwJ2 levels. dwf2' root lengths were the longest. dwfl and dwf3
had nearly the same size leaves as E- 1, but a dwarfed stem.
These two dwarfs appear to exhibit stem-specific dwarfing
and would be of interest for future studies involving tissue
specific responses to GAs.
Comparison of dwJ2 and E- 1 at the light microscope level

showed E- 1 had fewer cells per unit surface area. However,
the total numbers of cells were similar for dwarf and E- 1 at
both the hypocotyl and mature plant stages. These data
suggest that the differences between dwarfand E-l stature can
be accounted for by differences in cell expansion, consistent
with the findings of Stuart et al. (24).

Sachs and Lang (20) investigated the effect of GA3 on
elongating axes of the rosette plants Hyoscyamus niger L. and
Samolus parviflorus Raf. They found that cell division was
the major component of growth during elongation. In our
study this question was not addressed, but a similar mecha-
nism may also operate in lettuce stems.
Leaf cross-sections of dwf2 were nearly twice the thickness

of E- 1 leaves. This supports a similar observation reported by
Koomneef et al. (8) for GA-deficient mutants of tomato.
There were also nearly 50% more leaves on dwfl and dwf2,
suggesting at least for dwf2 a higher rate of leaf initiation
compared to E- 1.
Mutants of maize, pea, and rice were described by Phinney

(16) as being nearly exact dwarf variations of the wild-type
form, except in the case of maize floral development. Photo-
graphs illustrating dwarfs of the same species have been
published. Size variation between dwarf strains did not ap-
parently vary for maize and rice (16), while differences were
evident among mutants of pea (5), Arabidopsis (9), and
tomato (8). This type of variation was also observed in our
lettuce mutants (Fig. 1). Koornneef and van der Veen (10)
reported their Arabidopsis dwarfs had poor petal and stamen

GA3 CONCENTRATION (j>M)

Figure 4. Response to increasing concentrations of GA3 by intact
hypocotyls (A), intact shoots (B), and intact leaves (C) of E-1, dwf1,
dwf2, dwf3, and dwf2'. E-1 (0), dwf 1 (d1 = 0), dwf2 (d2 = +), dwf3
(d3 = ), dwf2' (d2i = U). In A, Con represents seedlings grown
without GA3. In B and C, Con-1 represents shoot heights at the time

of GA3 application. Con-2 represents shoot heights of plants treated
as a water control, measured the same time as the treated plants (1
week later). Each point represents the average of 20 seedlings (A)
and five plants (B and C) ± SD.
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Figure 5. Intact hypocotyl elongation assay of dwf2 (A) and E-1 (B)
grown in the light, using GA biosynthetic pathway members at
increasing concentrations. Control (CON = 0), ent-kaurenol (KOL =
0), ent-kaurenoic acid (KAC = +), GA53-aldehyde (GA53-ald = l),
GA53 (U), GA19 (A), GA20 (x), and GA1 (A). Each point represents an
average (± SD) of two experiments, 20 seedlings per experiment.

development. This agrees with our observations of dwarf
flowers.

In the hypocotyl stage, response ofdwarfand normal lettuce
to GA3, as well as certain 1 3-hydroxy GAs, was quite similar.
There was very little difference in responsiveness to applied
GAs at this stage except that dwf3 had delayed germination
which is genetically controlled. However, at 21 d the dwarfs
were less responsive to GA3 than the normal genotype, and
dwarf plants required higher concentrations of GA3 to pro-

duce stem and leaf equivalents of normal plants. Here, the
dwf2' response indicates that plant height in lettuce may be
associated with GA3 responsiveness. Koornneef et al. (8)
found the same for tomato. This suggests that there is more
than simply decreased GA biosynthesis at work in these
mutants.

The strong response by hypocotyls of normal lettuce to
applied GAs has been commonly used for gibberellin bioas-
says. At least two other nondwarf bioassays are reported:
cucumber hypocotyl and excised pea epicotyl (1, 23). Thus, a
high degree of responsiveness in normal, wild-type lines is not
unique to lettuce. Nevertheless, it is the reduced responsive-
ness of dwarf lettuce to applied GA during the rosette stage
(21 d) which makes classification of these plants difficult as
biosynthetic mutants. We have shown they are typical respon-
sive mutants, and they can be restored to the E-1 phenotype
with repeated sprays of 10 jtM GA3. They also can synthesize
their own GAs as shown in Figure 3; dwarf seedlings became
etiolated in response to decreased light levels. Responsiveness
of dwarfs in other species to applied GAs tends to be higher
than for the normal. While dwarfs of maize (15), Arabidopsis
(9), rice (1 1), and barley (4) all elongated significantly more
than their normal genotypes, dwarf pea (19) and tomato (8)
responded less than their normals. The lettuce results concur
with this latter group.
The correlation between biological activity and applied

endogenous GAs and their precursors has been used to inves-
tigate the position ofthe metabolic blocks in mutants ofmaize
(17), and ofpea (6). Such bioassays were conducted with dwf2
and E- 1 lettuce seedlings. In both cases, a break in biological
activity between the ent-kaurenoids and GA53 was observed.
Per se, these results with dwf2 do not establish that the dwf2
mutation occurs prior to GA53. However, the fact that dwf2
and E- 1 seedlings do respond similarly to the applied GAs in
the hypocotyl elongation assay may indicate that the biochem-
ical step affected in dwf2 occurs early in the GA biosynthetic
pathway.
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